Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
Advanced search 
Year : 2012  |  Volume : 8  |  Issue : 32  |  Page : 245-249

Zinc administration modulates radiation-induced oxidative injury in lens of rat

1 Department of Medical Biochemistry, Gaziantep University, Medical School, Gaziantep, Turkey
2 Department of Ophthalmology, Gaziantep University, Medical School, Gaziantep, Turkey
3 Department of Chemistry, Science and Art Faculty, Kilis 7 Aralik University, Kilis, Turkey
4 Department of Biochemistry, Ataturk University, School of Medicine, Erzurum, Turkey
5 Department of Ophthalmology, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
6 Department of Radiation Oncology, Gaziantep University, Medical School, Gaziantep, Turkey

Correspondence Address:
Seyithan Taysi
Department of Biochemistry and Clinical Biochemistry, Gaziantep University, School of Medicine, Gaziantep
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/0973-1296.103646

Rights and Permissions

Background : The aim of this study was to evaluate the antioxidant role of zinc (Zn) against radiation-induced cataract in the rat lens after total cranial irradiation with a single 5 Gray (Gy) dose of gamma irradiation. Materials and Methods : Twenty-one Sprague-Dawley rats were used for the experiment. The control group did not receive Zn or irradiation but received 1-ml saline orally plus sham-irradiation. The irradiation (IR) group received 5 Gy gamma irradiation to the total cranium as a single dose plus 0.1 ml physiological saline intraperitoneally. The IR plus Zn group received irradiation to total cranium plus 10 mg/kg/day Zn intraperitoneally. Biochemical parameters measured in rat lenses were carried out using spectrophotometric techniques. Results: Lens total (enzymatic plus non-enzymatic) superoxide scavenger activity (TSSA), glutathione reductase (GRD), and glutathione-S-transferase (GST) activities significantly increased in the IR plus Zn groups when compared with the IR group. However, TSSA, GRD and GST activities were significantly lower in the IR group when compared with the control group. Lens non-enzymatic superoxide scavenger activity (NSSA) in the IR plus Zn group was significantly increased compared to that of the IR group. Lens xanthine oxidase (XO) activity in the IR group significantly increased compared to that of both the control and IR plus Zn groups. Conclusion : Zn has clear antioxidant properties and prevented oxidative stress by scavenging free radicals generated by ionizing radiation in rat lenses.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded276    
    Comments [Add]    
    Cited by others 10    

Recommend this journal