Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
Advanced search 
Year : 2011  |  Volume : 7  |  Issue : 26  |  Page : 126-132

Sodium metabisulfite-induced polymerization of sickle cell hemoglobin incubated in the extracts of three medicinal plants (Anacardium occidentale, Psidium guajava, and Terminalia catappa)

Department of Biochemistry, Imo State University, Owerri, Imo State, Nigeria

Correspondence Address:
Paul Chidoka Chikezie
Department of Biochemistry, Imo State University, Owerri, Imo State
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/0973-1296.80670

Rights and Permissions

Background: The exploitation and utilization of vast varieties of herbal extracts may serve as alternative measures to deter aggregation of deoxygenated sickle cell hemoglobin (deoxyHbS) molecules. Objective: The present in vitro study ascertained the capacity of three medicinal plants, namely, Anacardium occidentale, Psidium guajava, and Terminalia catappa, to alter polymerization of HbS. Materials and Methods: Spectrophotometric method was used to monitor the level of polymerization of hemolysate HbS molecules treated with sodium metabisulfite (Na 2 S 2 O 5 ) at a regular interval of 30 s for a period of 180 s in the presence of separate aqueous extracts of A. occidentale, P. guajava, and T. catappa. At time intervals of 30 s, the level of polymerization was expressed as percentage of absorbance relative to the control sample at the 180th s. Results: Although extracts of the three medicinal plants caused significant (P < 0.05) reduction in polymerization of deoxyHbS molecules, the corresponding capacity in this regard diminished with increase in incubation time. Aqueous extract of P. guajava exhibited the highest capacity to reduced polymerization of deoxyHbS molecules. Whereas at t > 60 s, extract concentration of 400 mg% of A. occidentale activated polymerization of deoxyHbS molecules by 6.23±1.34, 14.53±1.67, 21.15±1.89, and 24.42±1.09%, 800 mg% of T. catappa at t > 30 s gave values of 2.50±1.93, 5.09±1.96, 10.00±0.99, 15.38±1.33, and 17.31±0.97%. Conclusion: The capacity of the three medicinal plants to interfere with polymerization of deoxyHbS molecules depended on the duration of incubation and concentration of the extracts.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded166    
    Comments [Add]    
    Cited by others 11    

Recommend this journal