|
ORIGINAL ARTICLE |
|
Year : 2010 | Volume
: 6
| Issue : 23 | Page : 248-254 |
|
|
Phenolic content and antioxidant activity of Pereskia grandifolia Haw. (Cactaceae) extracts
KS Sim1, AM Sri Nurestri1, AW Norhanom2
1 Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia 2 Centre for Foundation Studies in Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
Date of Submission | 17-Feb-2010 |
Date of Decision | 19-Jun-2010 |
Date of Web Publication | 30-Jul-2010 |
Correspondence Address: A M Sri Nurestri Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur Malaysia
 Source of Support: University of Malaya (PPP PS241/2008C) and Fundamental Research Grant Scheme from Ministry of Higher Education (FP040/2008C), Conflict of Interest: None  | Check |
DOI: 10.4103/0973-1296.66945
Abstract | | |
The leaves of Pereskia grandifolia Haw. (Cactaceae), commonly known as "Jarum Tujuh Bilah" in Malaysia, have been traditionally used as natural remedy in folk medicine by the locals. In the present study, the antioxidant potential of P. grandifolia crude methanol and its fractionated extracts (hexane, ethyl acetate and water) have been investigated, employing three different established testing systems, such as scavenging activity on 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals, reducing power assay and b-carotene method. The total phenolic content of the P. grandifolia extracts was also assessed by the Folin-Ciocalteau's method. The ethyl acetate extract showed significantly the highest total phenolic content, DPPH scavenging ability and antioxidant activity in b-carotene bleaching assay while the hexane extract possessed significantly strongest reducing power. The data obtained in these testing systems clearly establish the antioxidant potency of P. grandifolia. As such, this is the first report on the antioxidant activities of P. grandifolia. Keywords: Antioxidant activity, Cactaceae, Pereskia grandifolia, phenolic content
How to cite this article: Sim K S, Sri Nurestri A M, Norhanom A W. Phenolic content and antioxidant activity of Pereskia grandifolia Haw. (Cactaceae) extracts. Phcog Mag 2010;6:248-54 |
How to cite this URL: Sim K S, Sri Nurestri A M, Norhanom A W. Phenolic content and antioxidant activity of Pereskia grandifolia Haw. (Cactaceae) extracts. Phcog Mag [serial online] 2010 [cited 2022 Aug 19];6:248-54. Available from: http://www.phcog.com/text.asp?2010/6/23/248/66945 |
Introduction | |  |
Free radicals are considered as important factors in the etiology of cancer, and components with antioxidant activity have received particular attention as potential inhibitors of several cancers. [1] A number of synthetic antioxidants, such as 2- and 3-tert-butyl-4-methoxyphenol (i.e. butylated hydroxyanisole, BHA), 2,6-di-tert-butyl-4-methylphenol (i.e. butylated hydroxytoluene, BHT) and tert-butylhydroquinone (TBHQ), have been added to foodstuffs to prevent the oxidation of food, but their safety has been questioned due to toxicity issue. [2] BHA and BHT have been found to be anticarcinogenic as well as carcinogenic in experimental animals. There are reports in the literature saying that BHA appeared to have tumor-initiating and tumor-promoting action. [3] Therefore, there has been considerable interest to develop natural antioxidants from botanical sources, especially edible medicinal plants, to replace synthetic antioxidants due to the long-term safety and negative consumer perception of synthetic antioxidants. [4],[5] The natural antioxidants generally function as free radical scavengers and chain breakers, complexes of pro-oxidant metal ions and quenchers of singlet-oxygen formation. [6]
Pereskia grandifolia Haw. (Cactaceae), commonly known as "Jarum Tujuh Bilah" in Malaysia, has been traditionally used as natural remedy in folk medicine by the locals. The leaves of P. grandifolia are traditionally used for the treatment of cancer, high blood pressure, diabetes and diseases associated with rheumatism and inflammation. The locals generally consume the leaves either raw or as concoction brewed from fresh leaves. The leaves of P. grandifolia are also used as remedy for relief of gastric pain, ulcer and for revitalizing the body. [7],[8] Sahu et al.[9] have indicated that P. grandifolia was used for reduction of swellings in India, as reported by Anon. [10]
In the present study, the antioxidant potency of P. grandifolia crude methanol and its fractionated extracts (hexane, ethyl acetate and water) have been investigated, employing three different established in vitro testing systems, such as scavenging activity on 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals, reducing power assay and β-carotene method. The total phenolic content of the P. grandifolia extracts was also assessed by the Folin-Ciocalteau's method. To our knowledge, there is no antioxidant study reported for P. grandifolia. Thus, antioxidant activity of P. grandifolia was evaluated as it had not been determined previously.
Materials and Methods | |  |
Plant sample collection and identification
Fresh leaves of P. grandifolia were collected from Petaling Jaya, Selangor, Malaysia, in February 2007. The samples were identified by Professor Dr. Halijah Ibrahim of Institute of Biological Sciences, Faculty of Science, University of Malaya, Malaysia, and a voucher specimen (SN01-07) was deposited at the herbarium of the Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia.
Chemicals
Gallic acid, BHA, ascorbic acid, DPPH, potassium ferricyanide, linoleic acid, Folin-Ciocalteu's phenol reagent and β-carotene were obtained from Sigma-Aldrich Company. Trichloroacetic acid, Tween 80, methanol, hexane and ethyl acetate were purchased from Merck Company. All other chemicals used were obtained either from from Sigma- Aldrich Company (USA) or Merck Company (Germany).
Preparation of extracts
The extracts were prepared as described previously. [7] All the extracts (methanol, hexane, ethyl acetate and water) were kept in the dark at 4ºC for not more than 1 week prior to evaluation of antioxidant activities and total phenolic content.
Determination of total phenolic content
The total phenolic content of the extracts was measured according to the Folin-Ciocalteu method described by Cheung et al0.[11] and Singleton et al.[12] The concentrations of phenolic compounds in P. grandifolia extracts were expressed as gallic acid equivalents (GAEs). Briefly, 0.02 ml of extract of different concentrations (4, 8, 12, 16 and 20 mg/ml) and control (methanol was used instead of extract) were mixed with 1.58 ml of distilled water. Then, 0.1 ml of Folin-Ciocalteu's phenol reagent was added to each test tube. After 3 min, 0.3 ml of saturated sodium carbonate (Na 2 CO 3 ) solution (~35%) was added to the mixture. The reaction mixtures were incubated at 40C for 30 min. Methanol was used as blank. All assays were conducted in triplicate. The absorbance was determined at 765 nm with a spectrophotometer (Hitachi U2000). Gallic acid solutions with concentrations ranging from 25 to 1000 mg/l were used for calibration. A dose response linear regression was generated by using the gallic acid standard absorbance and the levels in the samples were expressed as gallic acid equivalents (mg of GAEs/g of extract). BHA was used as positive reference standard in the study.
Scavenging activity on 1,1-diphenyl-2-picrylhydrazyl radicals
The scavenging activity of P. grandifolia extracts on DPPH radicals was measured according to the method described by Cheung et al.[11] with some modifications. Extracts with different concentrations and control (methanol was used instead of extract) were mixed with 0.8% of DPPH solution. The reaction mixtures were incubated at room temperature and allowed to react for 30 min in the dark. All measurements were taken in dim light. The optical density was measured at 520 nm with a spectrophotometer (Hitachi U2000). Methanol was used as blank.
The scavenging activity (%) on DPPH radical was calculated according to the following equation:

where Acontrol is the absorbance of the control and Asample is the absorbance of the extract/standard. All assays were conducted in triplicate. Ascorbic acid and BHA were used as positive reference standards in this study.
The scavenging ability of the extracts was expressed as EC 50 value, which is the effective concentration at which 50% of DPPH radicals were scavenged. The EC 50 value was obtained from the graph of scavenging activity (%) versus concentration of extracts.
Reducing power assay
The reducing power of the prepared extracts was determined according to method described by Oyaizu. [13] Briefly, each extract in varying amounts of 5, 10, 15 and 20 mg was dissolved in 1.0 ml of methanol to which was added 2.5 ml of 0.2 M phosphate buffer (pH 6.6) and 2.5 ml of 1% (w/v) solution of potassium ferricyanide. The mixture was incubated in a water bath at 50ºC for 20 min. Following this, 2.5 ml of 10% (w/v) trichloroacetic acid solution was added and the mixture was then centrifuged at 1000 rpm for 10 min. A 2.5-ml aliquot of the upper layer was combined with 2.5 ml of distilled water and 0.5 ml of a 0.1% (w/v) solution of ferric chloride. Absorbance of the reaction mixture was read spectrophotometrically (Hitachi U2000) at 700 nm. Increased absorbance of the reaction mixture indicates greater reducing power. Mean values from three independent samples were calculated for each extract. Ascorbic acid and BHA were used as positive reference standards.
β-Carotene bleaching method
The antioxidant activity of the prepared P. grandifolia0 extracts was determined according to the β-carotene bleaching method described by Cheung et al.[11] A reagent mixture containing 1 ml of β-carotene solution (0.2 mg/ml in chloroform), 0.02 ml of linoleic acid and 0.2 ml of Tween 80 was pipetted into a round-bottomed flask. After removing the chloroform by using a rotary evaporator (Buchi), 50 ml of oxygenated distilled water was added to the flask. The mixture was stirred vigorously to form a liposome solution. Aliquots (5 ml) of the liposome solution were transferred to a series of test tubes containing 0.2 ml of extract with different concentrations (4-20 mg/ml). Methanol or water (instead of extract) was used as control while the blank contained all the earlier chemicals (0.02 ml of linoleic acid and 0.2 ml of Tween 80 in 50 ml of oxygenated distilled water) except β-carotene solution. The absorbance of each extract was measured immediately (t = 0 min) at 470 nm using a spectrophotometer (Hitachi U2000). Subsequently, the reaction mixtures were incubated at 50ºC. The absorbance was measured again at time intervals of 20 min for 2 h (t = 120 min). All samples were assayed in triplicate. BHA was used as standard. The rate of β-carotene bleaching (R) was calculated according to the equation:

where ln is natural logarithm, A0 is absorbance at time 0, A t is absorbance at time t, and t is 20, 40, 60, 80, 100 or 120 min. The antioxidant activity (%) was calculated in terms of percentage inhibition relative to the control, using the equation:

Statistical analysis
The antioxidant data in the present study were subjected to one-way analysis of variance (ANOVA) and the significance of the difference between the means was determined by the Duncan's multiple range tests at 95% least significant difference (P < 0.05).
Results and Discussion | |  |
The differences in each antioxidant activity detection system depend on the unique characteristic of each test. Previous study shows that no single testing method is sufficient to estimate the antioxidant activity of a studied sample. [14] Thus, the combination of four methods (i.e. total phenolic content using Folin-Ciocalteau's method, scavenging activity on DPPH radicals, reducing power assay and β-carotene method) was used in this study to evaluate the antioxidant activity of P. grandifolia. In this study, P. grandifolia was extracted with methanol and further fractionated into hexane, ethyl acetate and water extracts. As indicated by Yan et al.,[15] a single solvent may not be enough to identify certain extracts responsible for the activity.
Total phenolic content
There is a recent renewed interest in phenolics as most phenolics possess strong antioxidant activity when compared to vitamins C and E in vitro0.[16] There are reports in the literature saying that there is a highly positive relation between total phenolic content and antioxidant activity in many plant species. [17],[18] The Folin-Ciocalteau's method has become a routine assay in determining the phenolic content in a test sample. In Folin-Ciocalteau's method, the reaction condition has been adjusted to pH ~ 10 by addition of a sodium carbonate solution. Dissociation of the phenolic proton leading to a phenolic ion is capable of reducing Folin-Ciocalteau's reagent as shown below: [19]

The total phenolic content in the extracts of P. grandifolia, determined from regression quotation of calibration curve [Figure 1], was expressed as milligrams of GAEs per gram of extract. The absorbance value of the test extract after subtraction of control (y) was translated into total phenolic content (mg/l of GAEs) using the gallic acid calibration plot with the following formula:

The concentrations of total phenolics of extracts of P. grandifolia are shown in [Table 1]. The highest amount was found in the ethyl acetate extract with 45.99 mg of GAEs/g of extract, followed by the methanol extract (38.54 mg of GAEs/g of extract), water extract (35.79 mg of GAEs/g of extract) and hexane extract (19.08 mg of GAEs/g of extract), although the yield of ethyl acetate extracts was the lowest among the fractionated extracts. [7] The significantly higher (P < 0.05) phenolic content in the ethyl acetate extract than in the crude methanol extract was probably due to the concentration of phenolic compounds in this fractionated extract. The high phenolic content in the ethyl acetate extract might contribute toward its antioxidant activities. P. grandifolia contains 2,4-di-tert-butylphenol and α-tocopherol (also a phenolic compound) in its ethyl acetate extract. [7] It is thus reasonable to assume that the phenolic content must have been contributed by these two compounds.
Scavenging activity on 1,1-diphenyl-2-picrylhydrazyl radicals
The proton radical-scavenging action is known to be one of the various mechanisms for antioxidation. DPPH radical scavenging activity is determined by a colorimetric assay. This assay is sensitive, requiring only small amount of samples [20] and allows testing of both lipophilic and hydrophobic substances. [21]
DPPH is a stable free radical and accepts an electron or hydrogen radical to become a stable diamagnetic molecule. [17],[18],[22],[23] The use of the stable DPPH radical has the advantage of being unaffected by side reactions, such as enzyme inhibition and metal chelation. [24] Scavenging of DPPH free radical determines the free radical scavenging capacity or antioxidant potential of the test sample, which shows its effectiveness, prevention, interception and repair mechanism against injury in a biological system. [25]
The scavenging activity (EC 50 values) of extracts on DPPH radicals are shown in [Table 2]. Lower EC 50 value indicates stronger ability of the extract to act as DPPH scavenger while the higher EC 50 value indicates the lower scavenging activity of the scavengers as more scavengers were required to achieve 50% scavenging reaction. The water extract of P. grandifolia with EC 50 value of >5 mg/ml was not effective in scavenging DPPH radical compared with other extracts. The ethyl acetate extract of P. grandifolia showed the best DPPH scavenging activity with the lowest EC 50 140 μg/ml, followed by the hexane (EC 50 285 μg/ml) and methanol extract (EC 50 860 μg/ml). This indicated that the ethyl acetate extract may well react with free radicals, terminating the chain reaction of free radicals. The stronger scavenging activity in the ethyl acetate and hexane extracts than in the crude methanol extract was probably due to the concentration of antioxidant compounds in the respective extracts.
The results [Table 1] and [Table 2] show that there is a correlation between higher DPPH scavenging activity and larger amount of total phenolics in the ethyl acetate extract. This finding is supported by previous reports which showed that phenolic compounds generally correlate with antioxidant capacities measured by DPPH assay. [26],[27] Thus, this indicated that phenolic compounds in the ethyl acetate extract may contribute to the DPPH scavenging activity although other antioxidants may probably be present in the extract.
Reducing power assay
Antioxidant effect often correlates with reductive activity. [28] In the reducing power assay, the presence of antioxidants in the samples results in the reduction of the ferric cyanide complex to the ferrous form which can be monitored by measuring the formation of Pearl's Prussian blue at 700 nm. The increased absorbance at 700 nm indicates an increase in reducing power of samples. [29] The extracts that showed comparable absorbance readings with ascorbic acid and BHA are considered to have high reducing power.
The reducing power of P. grandifolia extracts and positive reference standards is shown in [Table 3] and [Figure 2]. The reducing power of P. grandifolia extracts increased steadily with increasing concentrations [Figure 2] and varied significantly with different concentrations (P < 0.05) [Table 3]. The methanol and hexane extracts appeared to possess ( P < 0.05) the highest significant reducing activity among the extracts [Figure 2]. The reducing powers of methanol extract were 1.056, 1.946, 2.204 and 2.460 when tested at concentrations of 5, 10, 15 and 20 mg/ml, respectively, while the reducing powers of hexane extract was 1.557 at 5 mg/ml and 2.015 at 20 mg/ml [Table 3]. The reducing power of water extract was significantly (P < 0.05) the lowest at 0.168, 0.227, 0.350 and 0.466 when tested at concentrations of 5, 10, 15 and 20 mg/ml, respectively. However, the reducing power of the positive reference standards (ascorbic acid and BHA) were relatively more pronounced than the tested extracts. The stronger reducing power in the hexane fractions than in the crude methanol extracts was probably due to the concentration of antioxidant compounds in the extract.
β-Carotene bleaching activity
In the β-carotene bleaching assay, the linoleic acid free radical, formed upon the abstraction of a hydrogen atom from one of its diallylic methylene groups, attacks the highly unsaturated β-carotene molecules. As a result, β-carotene molecules lose their double bonds by oxidation in this model system. In the absence of an antioxidant, the β-carotene molecule loses its chromophore and undergoes rapid discoloration, which can be monitored spectrophotometrically.[30],[31],[32]
[Table 4] and [Figure 3] show the antioxidant activities of the P. grandifolia extracts and BHA, as measured by the bleaching of β-carotene. The antioxidant activities of all the extracts gradually increased with increasing concentration of the extracts [Figure 3] and varied significantly with different concentrations (P < 0.05) [Table 4]. As shown in [Figure 3], the water extract showed the lowest significant antioxidant activity (P < 0.05) while the ethyl acetate extract showed the highest significant activity at all the concentrations tested (P < 0.05). The ethyl acetate extracts of P. grandifolia exhibited 83.13% antioxidant activity at 20 mg/ml which was comparable to that of BHA standard at 20 mg/ml (92.46%) [Table 4]. The high antioxidant activity of ethyl acetate extract tested using β-carotene model may be correlated with the high phenolic content of the ethyl acetate extract [Table 1].
Conclusion | |  |
The results obtained from the present study indicated that the ethyl acetate extract of P. grandifolia has the highest significant (P < 0.05) total phenolic content, DPPH scavenging ability and antioxidant activity (in β-carotene bleaching assay) among the extracts. This indicated that the antioxidant activity of the ethyl acetate extract was well correlated with the content of its phenolic compounds. Based on our previous study,[7] 2,4-di-tert-butylphenol, α-tocopherol and β-sitosterol were isolated and identified from the ethyl acetate extract of P. grandifolia. These compounds have been reported to possess antioxidant activities. [33],[34],[35],[36],[37],[38] It is suggested that the total phenolic content and antioxidant activity of the ethyl acetate extract may be partly contributed by the above compounds.
In conclusion, this study suggested that P. grandifolia is a potential source of natural antioxidants. However, further investigations on in vivo antioxidant activities are highly recommended.
Acknowledgment | |  |
This work was supported by research fund from the University of Malaya (PPP PS241/2008C) and Fundamental Research Grant Scheme from Ministry of Higher Education (FP040/2008C).
References | |  |
1. | Dedoussis GV, Kaliora A, Andrikopoulos NK. Effect of phenols on natural killer (NK) cell-mediated death in the K562 human leukemic cell line. Cell Biol Int 2005;29:884-9. |
2. | Valentao P, Fernandes E, Carvalho F, Andrade PB, Seabra RM, Bastos ML. Antioxidative properties of Cardoon (Cynara cardunculus L.) infusion against superoxide radical, hydroxyl radical, and hypochlorous acid. J Agric Food Chem 2002;50:4989-93. |
3. | Botterweck AA, Verhagen H, Goldbohm RA, Kleinjans J, Brandt PA. Intake of butylated hydroxyanisole and butylated hydroxytoluene and stomach cancer risk: Results from analyses in the Netherlands cohort study. Food Chem Toxicol 2000;38:599-605. [PUBMED] [FULLTEXT] |
4. | Amarowicz R, Pegg RB, Moghaddam PR, Barl B, Weil JA. Free-radical scavenging capacity and antioxidant activity of selected plant species from the Canadian Prairies. Food Chem 2004;84:551-62. |
5. | Sakanaka S, Tachibana Y, Ishihara N, Juneja LR. Antioxidant activity of egg yolk hydrolysates in a linoleic acid oxidation system. Food Chem 2004;86:99-103. |
6. | Pratt DE. Natural antioxidants from plant material. In: Huang MT, Ho CT, Lee CY, editors. Phenolic compounds in food and their effects on health 2. Antioxidants and cancer prevention, ACS Symposium Series 507. Washington: American Chemical Society; 1992. p. 54-71. |
7. | Sri Nurestri AM, Sim KS, Norhanom AW. Phytochemical and cytotoxic investigations of Pereskia grandifolia Haw. (Cactaceae) leaves. J Biol Sci 2009;9:488-93. |
8. | Goh KL. Malaysian Herbaceous Plants. Malaysia: Advanco Press; 2002. |
9. | Sahu NP, Banerji N, Chakravarti RN. A new saponin of oleanolic acid from Pereskia grandifolia. Phytochemistry 1974;13:529-30. |
10. | Anon. The Wealth of India. Vol. 7. India: Council of Scientific and Industrial Research; 1969. |
11. | Cheung LM, Cheung PC, Ooi VEC. Antioxidant activity and total phenolics of edible mushroom extracts. Food Chem 2003;81:249-55. |
12. | Singleton VL, Rossi JA. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Amer J Enol Viticult 1965;16:144-58. |
13. | Oyaizu M. Studies on products of browning reactions: Antioxidative activities of products of browning reaction prepared from glucosamine. Jpn J Nutr 1986;44:307-15. |
14. | Erel O. A novel automated method to measure total antioxidant response against potent free radical reactions. Clin Biochem 2004;37:112-9. [PUBMED] [FULLTEXT] |
15. | Yan XJ, Fang GM, Lou QX. Studies on free radical scavenging activity in Chinese seaweeds. Part1. Screening results. Chin J Oceanol Limnol 1999;17:240-6. |
16. | Guo C, Yang J, Wei J, Li Y, Xu J, Jiang Y. Antioxidant activities of peel, pulp and seed fractions of common fruits as determined by FRAP assay. Nutr Res 2003;23:1719-26. |
17. | Duh PD, Tu YY, Yen GC. Antioxidant activity of water extract of Harug Jyur (Chrysanthemum morifolium Ramat). Lebensm Wiss Technol 1999; 32: 269-77. |
18. | Gulcin I, Kufrevioglu OI, Oktay M, Buyukokuroglu ME. Antioxidant, antimicrobial, antiulcer and analgesic activities of nettle (Urtica dioica L.). J Ethnopharmacol 2004;90:205-15. |
19. | Huang D, Ou B, Prior RL. The chemistry behind antioxidant capacity assays. J Agric Food Chem 2005;53:1841-56. [PUBMED] [FULLTEXT] |
20. | Blois MS. Antioxidant determinations by the use of a stable free radical. Nature 1958;181:1199-200. |
21. | Kulisic T, Radonic A, Katalinic V, Milos M. Use of different methods for testing antioxidative activity of oregano essential oil. Food Chem 2004;83:633-40. |
22. | Chang LW, Yen WJ, Huang SC, Duh PD. Antioxidant activity of sesame coat. Food Chem 2002; 78 :347-54. |
23. | Gulcin I, Uguz MT, Oktay M, Beydemir S, Kufrevioglu OI. Antioxidant and antimicrobial activities of Teucrium polium L. J Food Technol 2003; 1 :9-17. |
24. | Lo KM, Cheung PC. Antioxidant activity of extracts from the fruiting bodies of Agrocybe aegerita var. alba. Food Chem 2005;89:533-9. |
25. | Lee HL, Halliwell B. Antioxidant and prooxidant abilities of foods and beverages. Meth Enymol 2001;335:181-90. |
26. | Tabart J, Kevers C, Pincemail J, Defraigne JO, Dommes J. Antioxidant capacity of black current varies with organ, season and cultivar. J Agric Food Chem 2006;54:6271-6. [PUBMED] [FULLTEXT] |
27. | Tabart J, Kevers C, Pincemail J, Defraigne JO, Dommes J. Comparative antioxidant capacities of phenolic compounds measured by various tests. Food Chem 2009;113:1226-33. |
28. | Duan XJ, Zhang WW, Li XM, Wang BG. Evaluation of antioxidant property of extract and fractions obtained from a red alga, Polysiphonia urceolata. Food Chem 2006;95:37-43. |
29. | Lih SL, Su TC, Wen WC. Studies on the antioxidative activities of Hsian tsao (Mesona procumbens Hemsl) Leaf Gum. J Agric Food Chem 2001;49:963-8. |
30. | Jayaprakasha GK, Singh RP, Sakariah KK. Antioxidant activity of grape seed (Vitis vinifera) extracts on peroxidation models in vitro. Food Chem 2001;73:285-90. |
31. | Kumaran A, Joel KR. Antioxidant and free radical scavenging activity of an aqueous extract of Coleus aromaticus. Food Chem 2006;97:109-14. |
32. | Wong KH, Sabaratnam V, Abdullah N, Kuppusamy UR, Naidu M. Effects of cultivation techniques and processing on antimaicrobial and antioxidant activities of Hericium erinaceus (Bull.:Fr.) Pers. Extracts. Food Tech Biotechno 2009;47:47-55. |
33. | Bermudez Y, Ahmadi S, Lowell NE, Kruk PA. Vitamin E suppresses telomerase activity in ovarian cancer cells. Cancer Detect Prev 2007;31:119-28. [PUBMED] [FULLTEXT] |
34. | Russo A, Cardile V, Ioannes AD, Garbarino. Effect of litreol on the viability of human cancer cells. Chem-Biol Inter 2009;179:178-84. |
35. | Kozubek A, Tyman JH. Resorcinolic lipids, the natural non-isoprenoid phenolic amphiphiles and their biological activity. Chem Rev 1999;99:1-26. [PUBMED] [FULLTEXT] |
36. | Choi Y, Lee J. Antioxidant and antiproliferative properties of a tocotrienol-rich fraction from grape seeds. Food Chem 2009;114:1386-90. |
37. | Jiang Q, Christen S, Shigenaga MK, Ames BN. Tocopherol, the major form of vitamin E in the US diet, deserves more attention. Am J Clin Nutr 2001;74:714-22. [PUBMED] [FULLTEXT] |
38. | Rensburg SJ, Daniels WM, Zyl JM, Taljaard JJ. A comparative study of the effects of cholesterol, beta-sitosterol, beta-sitosterol glucoside, dehydroepiandrosterone sulphate and melatonin on in vitro lipid peroxidation. Met Brain Dis 2000;15:257-65. |
[Figure 1], [Figure 2], [Figure 3]
[Table 1], [Table 2], [Table 3], [Table 4]
This article has been cited by | 1 |
Ethnobotanical and ethnopharmacological study of medicinal plants used by a traditional community in Brazil’s northeastern |
|
| P. K. A. Magalhães, E. N. Araujo, A. M. Santos, M. B. Vanderlei, C. C. L. Souza, M. S. Correia, S. A. Fonseca, J. M. J. S. Pavão, M. A. Souza, J. G. Costa, A. F. Santos, T. J. Matos-Rocha | | Brazilian Journal of Biology. 2022; 82 | | [Pubmed] | [DOI] | | 2 |
Evaluation of antioxidant and antimicrobial potential of rutin in combination with butylated hydroxytoluene in cheddar cheese |
|
| Bakhtawar Naseer, Sanaullah Iqbal, Namrah Wahid, Haroon Jamshaid Qazi, Muhammad Nadeem, Muhammad Nawaz | | Journal of Food Processing and Preservation. 2021; 45(1) | | [Pubmed] | [DOI] | | 3 |
Normalisation of human chorionic gonadotrophin (hCG) levels in a patient with partial molar pregnancy with a uterine mass without chemotherapy: impact of using herbal remedies |
|
| Norzila Ismail, Aida Maziha Zainudin, Gan Siew Hua | | Journal of Complementary and Integrative Medicine. 2021; 0(0) | | [Pubmed] | [DOI] | | 4 |
Portable optical instrumentation for the evaluation of the onsite antioxidant scavenging capacity assay |
|
| Shih-Feng Tseng, Hsing-Bi Chen, Yung-Sheng Lin, Ming-Fu Chen | | Instrumentation Science & Technology. 2021; : 1 | | [Pubmed] | [DOI] | | 5 |
Nutritional assay Pereskia spp.: unconventional vegetable |
|
| MELISSA G. SILVEIRA, CAMILA T.R. PICININ, MARCELO ÂNGELO CIRILLO, JULIANA M. FREIRE, MARIA DE FÁTIMA P. BARCELOS | | Anais da Academia Brasileira de Ciências. 2020; 92( suppl 1) | | [Pubmed] | [DOI] | | 6 |
Candeia ( Eremanthus erythroppapus ) oil extraction using supercritical CO 2 with ethanol and ethyl acetate cosolvents |
|
| Kátia Andressa Santos,Paula Cassiana Frohlich,Jaqueline Hoscheid,Tatiana Shioji Tiuman,José Eduardo Gonçalves,Lúcio Cardozo-Filho,Edson Antônio da Silva | | The Journal of Supercritical Fluids. 2017; | | [Pubmed] | [DOI] | | 7 |
Optimisation of extraction conditions for recovering carotenoids and antioxidant capacity from Gac peel using response surface methodology |
|
| Hoang V. Chuyen,Paul D. Roach,John B. Golding,Sophie E. Parks,Minh H. Nguyen | | International Journal of Food Science & Technology. 2017; | | [Pubmed] | [DOI] | | 8 |
Pereskia aculeata Muller (Cactaceae) Leaves: Chemical Composition and Biological Activities |
|
| Lucèia Souza,Lucia Caputo,Ingrid Inchausti De Barros,Florinda Fratianni,Filomena Nazzaro,Vincenzo De Feo | | International Journal of Molecular Sciences. 2016; 17(9): 1478 | | [Pubmed] | [DOI] | | 9 |
Improvement of physiological parameters of rats subjected to hypercaloric diet, with the use of Pereskia grandifolia (Cactaceae) leaf flour |
|
| Martha Elisa Ferreira de Almeida,Anderson Assaid Simão,Angelita Duarte Corrêa,Regiane Victória de Barros Fernandes | | Obesity Research & Clinical Practice. 2015; | | [Pubmed] | [DOI] | | 10 |
Antioxidant, nutritional and anti-nutritional composition of Garcinia kola and Chrysophyllum albidum from rainforest ecosystem of Ondo State, Nigeria |
|
| Jonathan C. Onyekwelu,Olufunmilayo Oyewale,Bernd Stimm,Reinhard Mosandl | | Journal of Forestry Research. 2015; 26(2): 417 | | [Pubmed] | [DOI] | | 11 |
Neuroprotective effects of xanthone derivative of Garcinia mangostana against lead-induced acetylcholinesterase dysfunction and cognitive impairment |
|
| Moe Pwint Phyu,Jitbanjong Tangpong | | Food and Chemical Toxicology. 2014; | | [Pubmed] | [DOI] | | 12 |
The Biological Activities and Chemical Composition of Pereskia Species (Cactaceae)—A Review |
|
| Nícolas de Castro Campos Pinto,Elita Scio | | Plant Foods for Human Nutrition. 2014; | | [Pubmed] | [DOI] | | 13 |
Apoptosis Induction by Polygonum minus Is Related to Antioxidant Capacity, Alterations in Expression of Apoptotic-Related Genes, and S-Phase Cell Cycle Arrest in HepG2 Cell Line |
|
| Mohd Alfazari Mohd Ghazali,Ghanya Al-Naqeb,Kesavanarayanan Krishnan Selvarajan,Mizaton Hazizul Hasan,Aishah Adam | | BioMed Research International. 2014; 2014: 1 | | [Pubmed] | [DOI] | | 14 |
Kinetic modeling of spice extraction from S. aromaticum and C. cassia |
|
| K. Radha krishnan,M. Sivarajan,S. Babuskin,G. Archana,P. Azhagu Saravana Babu,M. Sukumar | | Journal of Food Engineering. 2013; 117(3): 326 | | [Pubmed] | [DOI] | | 15 |
Phytochemical Composition and Antioxidant Properties of Methanol Extracts of Leaves and Fruits ofNeolamarckia cadamba(Roxb.) |
|
| Deepak Ganjewala,Niharika Tomar,Ashish Kumar Gupta | | Journal of Biologically Active Products from Nature. 2013; 3(4): 232 | | [Pubmed] | [DOI] | | 16 |
Cancer preventive and curative attributes of plants of the Cactaceae family: A review |
|
| Harlev, E. and Nevo, E. and Solowey, E. and Bishayee, A. | | Planta Medica. 2013; 79(9): 713-722 | | [Pubmed] | | 17 |
Kinetic modeling of spice extraction from S. aromaticum and C. cassia |
|
| Radha Krishnan, K. and Sivarajan, M. and Babuskin, S. and Archana, G. and Azhagu Saravana Babu, P. and Sukumar, M. | | Journal of Food Engineering. 2013; 117(3): 326-332 | | [Pubmed] | | 18 |
Free radical scavenging and total antioxidant capacity of methanol extract of ethulia conyzoides growing in nigeria |
|
| Aliyu, A.B. and Ibrahim, M.A. and Ibrahim, H. and Musa, A.M. and Lawal, A.Y. and Oshanimi, J.A. and Usman, M. and Abdulkadir, I.E. and Oyewale, A.O. and Amupitan, J.O. | | Romanian Biotechnological Letters. 2012; 17(4): 7458-7465 | | [Pubmed] | | 19 |
Comparative in vitro antimicrobial and phytochemical evaluation of methanolic extract of root, stem and leaf of Jatropha curcas linn |
|
| Sharma, A.K. and Gangwar, M. and Tilak, R. and Nath, G. and Sinha, A.S.K. and Tripathi, Y.B. and Kumar, D. | | Pharmacognosy Journal. 2012; 4(30): 34-40 | | [Pubmed] | | 20 |
Antioxidant activity of winter melon (benincasa hispida) seeds using conventional soxhlet extraction technique |
|
| Mandana, B. and Russly, A.R. and Farah, S.T. and Noranizan, M.A. and Zaidul, I.S. and Ali, G. | | International Food Research Journal. 2012; 19(1): 229-234 | | [Pubmed] | | 21 |
2012-Another successful new year for Pharmacogn Mag. |
|
| Mueen Ahmed, K.K. | | Pharmacognosy Magazine. 2012; 8(29): 1-3 | | [Pubmed] | | 22 |
In vitro antimicrobial activity on clinical microbial strains and antioxidant properties of Artemisia parviflora |
|
| Ahameethunisa, A.R. and Hopper, W. | | Annals of Clinical Microbiology and Antimicrobials. 2012; 11(30) | | [Pubmed] | | 23 |
Involvement of arginine-vasopressin in the diuretic and hypotensive effects of Pereskia grandifolia Haw. (Cactaceae) |
|
| Kazama, C.C. and Uchida, D.T. and Canzi, K.N. and De Souza, P. and Crestani, S. and Gasparotto Junior, A. and Laverde Junior, A. | | Journal of Ethnopharmacology. 2012; 144(1): 86-93 | | [Pubmed] | | 24 |
Chemical composition, nutritional value, and antioxidant activities of eight mulberry cultivars from China |
|
| Liang, L. and Wu, X. and Zhu, M. and Zhao, W. and Li, F. and Zou, Y. and Yang, L. | | Pharmacognosy Magazine. 2012; 8(31): 215-224 | | [Pubmed] | | 25 |
Involvement of arginine-vasopressin in the diuretic and hypotensive effects of Pereskia grandifolia Haw. (Cactaceae) |
|
| Caroline Calixto Kazama,Denise Thiemi Uchida,Karina Natally Canzi,Priscila de Souza,Sandra Crestani,Arquimedes Gasparotto Junior,Antonio Laverde Junior | | Journal of Ethnopharmacology. 2012; 144(1): 86 | | [Pubmed] | [DOI] | | 26 |
In vitro antimicrobial activity on clinical microbial strains and antioxidant properties of Artemisia parviflora |
|
| Abdul R Ahameethunisa,Waheeta Hopper | | Annals of Clinical Microbiology and Antimicrobials. 2012; 11(1): 30 | | [Pubmed] | [DOI] | | 27 |
Comparative in vitro Antimicrobial and Phytochemical Evaluation of Methanolic Extract of Root, Stem and Leaf of Jatropha curcas Linn |
|
| Amit Kumar Sharma,Mayank Gangwar,Ragini Tilak,Gopal Nath,Akhoury Sudhir Kumar Sinha,Yamini Bhusan Tripathi,Dharmendra Kumar | | Pharmacognosy Journal. 2012; 4(30): 34 | | [Pubmed] | [DOI] | | 28 |
Antiapoptotic and Antioxidant Properties of Orthosiphon stamineus Benth (Catæs Whiskers): Intervention in the Bcl-2-Mediated Apoptotic Pathway |
|
| Siddig Ibrahim Abdelwahab,Syam Mohan,Manal Mohamed Elhassan,Nabil Al-Mekhlafi,Abdelbasit Adam Mariod,Ahmad Bustamam Abdul,Mahmood Ameen Abdulla,Khalid M. Alkharfy | | Evidence-Based Complementary and Alternative Medicine. 2011; 2011: 1 | | [Pubmed] | [DOI] | | 29 |
Antiapoptotic and antioxidant properties of orthosiphon stamineus benth (Catæs Whiskers): Intervention in the Bcl-2-mediated apoptotic pathway |
|
| Abdelwahab, S.I., Mohan, S., Mohamed Elhassan, M., Al-Mekhlafi, N., Mariod, A.A., Abdul, A.B., Abdulla, M.A., Alkharfy, K.M. | | Evidence-based Complementary and Alternative Medicine. 2011; art 156765 | | [Pubmed] | | 30 |
Studies on antimicrobial and antioxidant activity of methanolic extract of Samadera indica |
|
| Viswanad, V. and Aleykutty, N.A. and Jaykar, B. and Zachariah, S.M. and Thomas, L. | | International Journal of Pharmaceutical Sciences Review and Research. 2011; 11(2): 59-64 | | [Pubmed] | | 31 |
Antioxidative effects of cinnamomi cortex: A potential role of iNOS and COX-II |
|
| Chung, J.-W. and Kim, J.-J. and Kim, S.-J. | | Pharmacognosy Magazine. 2011; 7(28): 314-319 | | [Pubmed] | | 32 |
The alteration of components in the fermented Hwangryunhaedok-tang and its neuroprotective activity |
|
| Yang, H.J. and Weon, J.B. and Lee, B. and Ma, C.J. | | Pharmacognosy Magazine. 2011; 7(27): 207-212 | | [Pubmed] | | 33 |
Antioxidant and DNA damage preventive properties of Centella asiatica (L) Urb. |
|
| Anand, T. and Naika, M. and Phani, K.G. and Khanum, F. | | Pharmacognosy Journal. 2010; 2(17): 53-58 | | [Pubmed] | |
|
 |
 |
|