Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
  
Advanced search 
 
ORIGINAL ARTICLE
Year : 2017  |  Volume : 13  |  Issue : 49  |  Page : 58-63

Chemical components from Aloe and their inhibition of indoleamine 2, 3-dioxygenase


1 College of Pharmacy, Chungnam National University, Daejeon, Korea
2 School of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, Korea

Correspondence Address:
Young Ho Kim
College of Pharmacy, Chungnam National University, Daejeon
Korea
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0973-1296.197633

Rights and Permissions

Background: In Korea, Aloe is routinely ingested as a traditional medicine or as a component of health beverages. Objective: To research the inhibition of indoleamine 2, 3-dioxygenase (IDO) activities of components from Aloe. Materials and Methods: the compounds were isolated by a combination of silica gel and YMC Rp-18 column chromatography, and their structures were identified by analysis of spectroscopic data (1D, 2D-NMR, and MS). All of the isolated compounds were examined for their ability to inhibit IDO, which actively suppresses immune functions by catalyzing the rate limiting reaction in the conversion of tryptophan to kynurenine. Results: In this phytochemical study, 18 known compounds were isolated from aqueous dissolved Aloe exudates. All of the isolated compounds were examined for their ability to inhibit IDO activities for a series of anthraquinone derivatives (1-7) isolated from the Aloe extract; the IC50 values of these compounds ranged from 39.41 to 53.93 µM. Enzyme kinetic studies of their modes of inhibition indicated that all of the compounds were uncompetitive inhibitors. Conclusion: The aqueous dissolved Aloe exudate can be used as a source of novel natural IDO inhibitors and merit testing as therapeutic agents in the treatments of cancer and immunopathologic diseases, such as autoimmune, inflammatory, and allergic disorders. Abbreviation used: IDO: inhibit indoleamine 2, 3-dioxygenase, TMS: tetramethylsilane, HMQC: heteronuclear multiple quantum correlation, HMBC: heteronuclear multiple bond correlation, COSY: 1H-1H correlation spectroscopy, ESI-MS: Electrospray ionization mass spectrometry, DMSO: dimethyl sulfoxide


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed365    
    Printed1    
    Emailed0    
    PDF Downloaded0    
    Comments [Add]    

Recommend this journal