Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
  
Advanced search 
 


 
ORIGINAL ARTICLE
Year : 2010  |  Volume : 6  |  Issue : 22  |  Page : 111-115 Table of Contents     

Simultaneous determination of five marker constituents in Ssanghwa tang by HPLC/DAD


1 Department of Biomaterials Engineering, School of Biotechnology and Bioengineering, Kangwon National University, Chuncheon 200-701, Korea
2 TKM Converging Research Division, Korea Institute of Oriental Medicine, 483 Exporo, Yuseong-gu, Daejeon 305-811, Korea
3 Department of Biomaterials Engineering, School of Biotechnology and Bioengineering, Kangwon National University, Chuncheon 200-701; and Research Institute of Biotechnology, Kangwon National University, Chuncheon 200-701, Korea

Date of Submission12-Jan-2010
Date of Decision22-Feb-2010
Date of Web Publication30-Apr-2010

Correspondence Address:
Choong Je Ma
Department of Biomaterials Engineering, School of Bioscience and Biotechnology, Kangwon National University, Hyoja-2 Dong, Chuncheon 200-701
Korea
Login to access the Email id


DOI: 10.4103/0973-1296.62896

PMID: 20668576

Get Permissions

   Abstract 

A HPLC-DAD method was established for the simultaneous evaluation of five bioactive compounds in Ssanghwa tang (SHT) including glycyrrhizin, paeoniflorin, cinnamic acid, decursin and 6-gingerol. These compounds were separated in less than 40 min using a Dionex C 18 column with a gradient elution system of water and methanol at a flow rate of 1 ml/min. Calibration curve of standard components presented excellent linear regression (R 2 > 0.9903) within the test range. Limit of detection and limit of quantification varied from 0.07 to 0.46 μg/ml and 0.13 to 1.11 μg/ml, respectively. The relative standard deviations (RSDs) of data of the intraday and interday experiments were less than 3.67 and 5.73%, respectively. The accuracy of recovery test ranged from 95.98 to 105.88% with RSD values 0.10- 4.82%.

Keywords: Herbal medicine, HPLC- DAD, quality control, quantification, Ssanghwa tang


How to cite this article:
Won JB, Ma JY, Um YR, Ma CJ. Simultaneous determination of five marker constituents in Ssanghwa tang by HPLC/DAD. Phcog Mag 2010;6:111-5

How to cite this URL:
Won JB, Ma JY, Um YR, Ma CJ. Simultaneous determination of five marker constituents in Ssanghwa tang by HPLC/DAD. Phcog Mag [serial online] 2010 [cited 2014 Dec 19];6:111-5. Available from: http://www.phcog.com/text.asp?2010/6/22/111/62896


   Introduction Top


Traditional herbal medicines are usually prepared from various herbs, and they exhibit various therapeutic effects with a complex of multiplicity components. [1],[2] And the quality of these herbs has been affected by many factors such as collection time, place, temperature, cultivation environment and manufacturing process. [3],[4],[5]

This suggests the necessity of the establishment of systematic quality evaluation. In fact, quality control method of single herb has been reported earlier. [6],[7],[8] However, the quality control of traditional herbal medicinal preparation or decoction, a mixture of herb combination, has not been a research interest for a long time. Only several marker compounds were analyzed by simple HPLC analysis method. This method was fruitless as it was expensive and time consuming, and also it failed to ensure efficient quality control and standardization of traditional herbal medicine. Therefore, it is critical to develop a method for the simultaneous determination of several marker compounds in traditional herbal medicine.

Ssanghwa tang (SHT) is a traditional herbal medicinal prescription used in the treatment of infirmity, refreshment congestion, sweat, convalescence recovery, and consists of Paeonia lactiflora, Glycyrrhiza glabra, Rehmannia glutinosa, Astragalus membranaceus, Angelica gigas, Zingiber officinale, Zizyphus jujuba, Cinnamomum cassia, and Cnidium officinale. [9] In Korea, SHT has been commercially produced as granules by several medicinal manufactures. To ensure efficacy and safety, a suitable assay method for quality control is required.

In this study, we employed a HPLC-DAD method for the simultaneous determination of five marker constituents in SHT, glycyrrhizin, paeoniflorin, cinnamic acid, decursin, and 6-gingerol. In addition, established analysis method was applied for the analysis of various SHT samples. The method was successfully validated and it was used to simultaneously determine five important SHT compounds [Figure 1].


   Experimental Top


Reagents and Materials

All the five standard compounds, paeoniflorin, trans-cinnamic acid, glycyrrhizin, decursin and 6-gingerol, were purchased from Natural Product Chemistry BioTech Inc. (Seoul, Korea). The purity of all five marker constituents was more than 98%. All the plant materials were purchased from Kyungdong traditional herbal market (Seoul, Korea). Five commercial brands of SHT granules were purchased from local providers. HPLC grade solvents (water and methanol) and reagents were obtained from J.T. Baker (USA).

Chromatographic conditions

Analysis was performed on the Dionex Ultimate 3000 HPLC system (Dionex, Germany) equipped with a pump (LPG 3X00), auto sampler (ACC-3000), column oven and diode array UV/VIS detector (DAD-3000(RS)). The output signal of the detector was recorded using a Dionex Chromelon TM Chromatography Data System. The separation was executed on a Dionex C 18 column (5 μm, 120 Ε, 4.6 mmΧ 150 mm). The mobile phase was composed of methanol (A) and water (B) with gradient elution system (0-3.5 min, 30% A isocratic; 3.5-10 min, 30-50% A; 10-30 min, 50-70% A; 30-40 min, 50% A isocratic) at a flow rate of 1.0 ml/min. The injection volume was 20 μl. The detection UV wavelength was set at 230, 254 and 280 nm. The column temperature was maintained at 25°C.

Preparation of standard solutions and sample

Each standard stock solution was prepared by dissolving each marker components in 60% methanol at a concentration of 1 mg/ml. Each five concentrations of working solutions diluted from stock solution were used for the establishment of calibration curve. The stock solutions were stored at 4°C. For the preparation of sample, 20 mg of commercial SHT powder was accurately weighed and dissolved in 20 ml of 60% methanol. The sample solution was filtered through a 0.45 μm filter before HPLC injection.


   Results and Discussion Top


The chromatographic condition was optimized to separate every peak of SHT compounds with a good resolution. We chose the Dionex C 18 column among many reverse phase columns through the preliminary test, including a XTerra RP 18 column (250 Χ 4.6 mm, 5μm; Waters), LUNA C18 column (250 Χ 4.6 mm, 5μm; Phenomenex). For the simultaneous determination of the five marker constituents in SHT, glycyrrhizin, paeoniflorin, 6-gingerol, cinnamic acid and decursin, gradient solvent system of water and methanol was applied as a mobile phase. The wavelength of DAD detector was tested at 230, 254 , 260, and 280 nm and set at 230 nm for peoniflorin, 6-gingerol and decursin, 254 nm for glycyrrhizin and 280 nm for cinnamic acid, where the marker compounds showed the maximum absorption as measured by a DAD detector. The presence of five marker compounds in this herbal medicine was confirmed by comparing each retention time and UV spectrum with those of each standard compound, and adding authentic standards. As a result, the optimal gradient mobile phase consisting of methanol-water was subsequently employed for the analysis of SHT, which gave good resolution and satisfactory peak shape at 230, 254, and 280 nm, respectively [Figure 2].

Specificity was confirmed by the purity of peaks detected by the diode array detector. The absorption spectrum of a single component remained little variable at each time point in one peak, which supported the specificity of each peak [Figure 2]. Our results clearly showed the specificity of each peak for five marker compounds. The linearity of five compounds was calculated based on the five concentrations of each compound. The regression equation and correlation coefficients (R 2) are listed in [Table 1] and high correlation coefficient values (R 2 > 0.9903) showed good linearity at a relatively wide range of concentration. Limit of detection (LOD) and limit of quantification (LOQ) were determined based on the method recommended by ICH (LOD = 3.3 Χ (SD / slope) and LOQ = 10 Χ (SD / slope), SD is the standard deviation of the response, slope is the slope of calibration curve). LOD and LOQ of five marker compounds were within a range of 0.07 - 0.46 μg/ml and 0.13 - 1.11 μg/ml, respectively, which showed a high sensitivity at this chromatographic condition [Table 1].

The precision test was accomplished by the intraday and interday test for these compounds. The intraday test was analyzed at three concentrations on the same day and interday test was analyzed at three concentrations on three sequential days (1, 3, 5 days). The RSD values of intraday and interday were 0.08 - 3.67% and 1.24 - 5.73%, respectively. These results indicated that this method exerted good precision [Table 2].

The recovery test was validated by the method of spiked test. The accuracy of each compound was 95.98-105.88% with RSD values less than 4.82% (n = 3) [Table 3].

The established HPLC method was applied for the simultaneous determination of the five marker components in commercial SHT sample. Analysis result suggested that this method effectively separated marker components in SHT sample without interference of peak of other components [Table 4]. Therefore, this method was very useful to evaluate the quality control and standardization of SHT.

In this study, a HPLC method was developed for the simultaneous determination of five marker components, paeoniflorin, 6-gingerol, decursin, glycyrrhzin and cinnamic acid in SHT. Validation of the method was carried out with linearity, accuracy and precision test. The results of validation indicated good precision and accuracy. The results of analysis of the commercial product suggest that this analysis method can be successfully applied for the quantification of marker compounds in SHT.


   Acknowledgements Top


This research was supported by a grant [K09040] from the Korea Institute of Oriental Medicine.

 
   References Top

1.Normile D. Asian medicine. The new face of traditional Chinese medicine. Science 2003;299:188-90.  Back to cited text no. 1  [PUBMED]  [FULLTEXT]  
2.Xue T, Roy R. Studying traditional Chinese medicine. Science 2003;300:740-1.  Back to cited text no. 2  [PUBMED]  [FULLTEXT]  
3.Lund ST, Bohlmann J. The molecular basis for wine grape quality: A volatile subject. Science 2006;311:804-5.  Back to cited text no. 3  [PUBMED]  [FULLTEXT]  
4.Lee MK, Park JH, Cho JH, Kim DH, Baek JH, Kim HJ, et al. Simultaneous determination of hesperidin and glycyrrhizin in Pyungwi-san by HPLC/DAD. Kor J Pharmacogn 2008;39:199-202.  Back to cited text no. 4      
5.Lee MK, Lee KY, Kim SH, Park J, Cho JH, Oh MH, et al. Simultaneous determination of baicalin and glycyrrhizin in Eul-Ja-Tang by HPLC/DAD. Nat Prod Sci 2008;14:147-51.  Back to cited text no. 5      
6.Ye J, Zhang X, Dai W, Yan S, Huang H, Liang X, et al. Chemical fingerprinting of Liuwei Dihuang Pill and simultaneous determination of its major bioactive constituents by HPLC coupled with multiple detections of DAD, ELSD and ESI-MS. J Pharm Biomed Anal 2009;49:638-45.   Back to cited text no. 6  [PUBMED]  [FULLTEXT]  
7.Zhang H, Chen S, Qin F, Huang X, Ren P, Gu X. Simultaneous determination of 12 chemical constituents in the traditional Chinese Medicinal Prescription Xiao-Yao-San-Jia-Wei by HPLC coupled with photodiode array detection. J Pharm Biomed Anal 2008;48:1462-6.   Back to cited text no. 7  [PUBMED]  [FULLTEXT]  
8.Song J, Han Q, Qiao C, Yip Y, Xu H. Simultaneous determination of multiple marker constituents in concentrated Gegen Tang granule by high performance liquid chromatography. Chin Med 2007;20:2-7.  Back to cited text no. 8      
9.Ma JY, Park DH, Park KS, Do KT, Shin HK. Acute toxicity study on Ssanghwa tang in mice. Korean J Ori Med 2007;13:141-9.  Back to cited text no. 9      


    Figures

  [Figure 1], [Figure 2]
 
 
    Tables

  [Table 1], [Table 2], [Table 3], [Table 4]


This article has been cited by
1 In vitro and in vivo assessment of cytochrome P450-mediated herb-drug interaction of Ssang-hwa-tang
Lee, S.Y. and Lee, J.-Y. and Kang, W. and Kwon, K.-I. and Oh, S.J. and Ma, J.Y. and Kim, S.K.
Food Chemistry. 2013; 136(2): 450-457
[Pubmed]
2 In vitro and in vivo assessment of cytochrome P450-mediated herb–drug interaction of Ssang-hwa-tang
Sang Yoon Lee,Ji-Yoon Lee,Wonku Kang,Kwang-il Kwon,Soo Jin Oh,Jin Yeul Ma,Sang Kyum Kim
Food Chemistry. 2013; 136(2): 450
[Pubmed]
3 Bioconversion composition of Ssanghwa-tang fermented by Lactobacillus fermentum
Min Cheol Yang,Dong-Seon Kim,Jin Yeul Ma
Biotechnology and Bioprocess Engineering. 2012; 17(1): 84
[Pubmed]
4 Determination and pharmacokinetics of [6]-gingerol in mouse plasma by liquid chromatography-tandem mass spectrometry
Min Gi Kim,Beom Soo Shin,Yohan Choi,Jae Kuk Ryu,Seung Woo Shin,Hyun Wook Choo,Sun Dong Yoo
Biomedical Chromatography. 2012; 26(5): 660
[Pubmed]
5 Anti-cancer and other bioactivities of Korean Angelica gigas Nakai (AGN) and its major pyranocoumarin compounds
Zhang, J. and Li, L. and Jiang, C. and Xing, C. and Kim, S.-H. and LĂĽ, J.
Anti-Cancer Agents in Medicinal Chemistry. 2012; 12(10): 1239-1254
[Pubmed]
6 Establishment of shelf-life of Ssanghwa-tang by long-term storage test
Seo, C.-S. and Kim, J.-H. and Lim, S.-H. and Shin, H.-K.
Korean Journal of Pharmacognosy. 2012; 43(3): 257-264
[Pubmed]
7 Determination of chlorogenic acid, baicalin and forsythin in Shuanghuanglian preparations by HPLC-DAD
Yang, L. and Yan, Q. and Mo, H. and Li, X. and Wang, Q.
Journal of the Chilean Chemical Society. 2012; 57(4): 1361-1363
[Pubmed]
8 Simultaneous determination of ten bioactive compaounds from the roots of Cynanchum paniculatum by using high performance liquid chromatography coupled-diode array detector
Weon, J.B. and Lee, B. and Yun, B.-R. and Lee, J. and Ma, C.J.
Pharmacognosy Magazine. 2012; 8(31): 231-236
[Pubmed]
9 Determination and pharmacokinetics of [6]-gingerol in mouse plasma by liquid chromatography-tandem mass spectrometry
Kim, M.G. and Shin, B.S. and Choi, Y. and Ryu, J.K. and Shin, S.W. and Choo, H.W. and Yoo, S.D.
Biomedical Chromatography. 2012; 26(5): 660-665
[Pubmed]
10 Bioconversion composition of ssanghwa-tang fermented by Lactobacillus fermentum
Yang, M.C. and Kim, D.-S. and Ma, J.Y.
Biotechnology and Bioprocess Engineering. 2012; 17(1): 84-92
[Pubmed]
11 Simultaneous quantification of marker components in Ojeok-san by HPLC-DAD
Weon, J.B., Park, H., Yang, H.J., Ma, J.Y., Ma, C.J.
Journal of Natural Medicines. 2011; 65(2): 375-380
[Pubmed]
12 Inhibitory effect of Ssanghwa-tang on bone loss in ovariectomized rats
Shim, K.-S., Lee, J.-H., Ma, C.J., Lee, Y.-H., Choi, S.-U., Lee, J., Ma, J.Y.
Animal Cells and Systems. 2010; 14(4): 283-289
[Pubmed]
13 Inhibitory effect of Ssanghwa-tang on bone loss in ovariectomized rats
Ki-Shuk Shim,Ji-Hye Lee,Choong Je Ma,Yoon-Hee Lee,Sung-Up Choi,Jaehoon Lee,Jin Yeul Ma
Animal Cells and Systems. 2010; 14(4): 283
[Pubmed]
14 Simultaneous determination of five marker constituents in Ssanghwa tang by HPLC/DAD.
Won JB, Ma JY, Um YR, Ma CJ
Pharmacognosy magazine. 2010; 6(22): 111-5
[Pubmed]



 

Top
 
  Search
 
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

 
  In this article
    Abstract
    Introduction
    Experimental
    Results and Disc...
    Acknowledgements
    References
    Article Figures
    Article Tables

 Article Access Statistics
    Viewed2111    
    Printed175    
    Emailed0    
    PDF Downloaded87    
    Comments [Add]    
    Cited by others 14    

Recommend this journal